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In the theory of a free gyroscope, it is assumed that the location of its 
instantaneous axis of rotation relative to the inner ring of the gimbals 
is fixed in the coordinate system attached to this ring. Below is con- 
sidered the motion of a gyroscope on gimbals for which the stated assump- 
tion is not made. The relative motion of the gyroscope is determined 
purely kinematically by means of prescribing the motion of its center of 
inertia and the orientation of the figure axis. The inertia forces of the 
relative motion generate small oscillations of the gyrsocope in the 
neighborhood of the stationary motion causing it to precess relative to 
the axis of the outer ring. Such a relative motion can take place if the 
gyroscope is supported by ball bearings on gimbals. 

1. The motion of a gyroscope relative to the inner ring of the 
gimbale. The axis of the gyroscope figure describes in relative motion a 
one-sheeted hyperboloid of rotation, the equation of which is derived 
below. The axis of the hyperboloid passes through the suspension center 
and is perpendicular to the axis of rotation of the inner ring. 

Let us attach to the inner ring of the gimbals a system of coordinates 
OXYZ such that the axis Oy is directed along the axis of rotation of the 
inner ring relative to the outer ring, while the axis Oz is along the 
axis of the hyperboloid. 

The origin of the C system of coordinates C$q; attached to the gyro- 
scope will be fixed at the center of inertia, while the axis Cc will be 
directed along the figure axis. The location of the coordinate system 
C<q 5 relative to the system Oxyz will be defined by three coordinates 
of point C and by the three Euler angles vy. 8, 0 (Fig. 1). 

The prescribed motion of the gyroscope relative to the inner ring of 
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the suspension will be given in the form 

xc = h cos I$, yc =hsin$, ZE = 0 

Ip = 9 Oh o=e,, rJl= g$$ (1) f (PO 

The gyroscope location is uniquely de- 
fined by a single coordinate. 

Let us now define the projections of 
the relative angular velocity of the 
gyroscope and the relative velocity of 
the point C’on the axis of the Oxyz 
system 

Fig. 1. 

o,=(k - 1) tan &I+ sing, oy = - (k - 1) tan 004 cos Fp uz=k$ 

v(‘) = v(f) 
cx - i+ sin $, cy = h$ cos +, v$ = 0 

The geometric interpretation of motion is considered in the book by 
sus lov. l 

We will choose two points P and Q on the axis Cc the coordinates of 
which (0. 0, I) and (0. 0, - 1) will be called the ends of the figure 
axis. Their trajectories in the Oxyz coordinate system represent the 
circles 

wa + ya = ha + EQ sina fJe, z=*tcose~ 

Eliminating 2 we will find the equation of the hyperboloid of rota- 
tion. described by the figure axis in the process of rotation 

We will consider the motion of a gyroscope in which the figure axis 
coincides with the polar axis of inertia; and at the same time we will 
assume the smallness of the angle 8, and let sin 8, = 8, and cos 8, = 1. 

2. The equations of motion of the gyroscope. We will derive by the 
bagrange method the equations of motion for the gyroscope fixed on an 
immovable support relative to the inertial space. The kinetic energyof 
the gimbals consists of the kinetic energy of the outer ring TZ=1/2A& 
(where A2 is the moment of inertia of the outer ring relative to its 
axis of rotation. a is the angle of rotation of the ring relative to the 
base) and of the kinetic energy of the inner ring 

. See [l] example 25 on pp. 96-97 and example 32 on pp. X10-111. 
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T1= f (I,, PI” + 1, a2 + II, F12 - 21z1, p1q1- 2I,, q1r1- 2z,, pg1) 

Here Izz, I 
yy’ zz’ xy’ yz’ I I I Zzz are moments of inertia of the inner 

ring relative to the system OXYZ; pl, ql, r1 are projections of the 
absolute angular velocity of the inner ring on the axes of the Oxyz co- 
ordinates attached to it. If p is used to denote the rotation angle of 
the inner ring relative to the outer ring, then 

m = & cos p, q1= j3, rl = & sin p 

In the following we will consider that the axis of rotation of the 
inner ring relative to the outer ring is a*principal axis of inertia, i.e. 
I xx =.4 1, lyy = B1, Izz = C,, Ixz = E,, Ixy = lyz = 0. In order to deter- 
mine the kinetic energy of the gyroscope one computes the components of 
its inertia tensor relative to the system Cxlylzl, the origin of which is 
at the point C, while the axes are parallel to the axes Ox, Oy and Oz 

Z x,x, = A + v - A) sin* 9 sin2 00, Zz,V, = (C - A) cos 9 sin $ sinz 60 

Z YlY1 = A + (C - A) cosz q sin2 60, Z,,% = - (C -A) sin $ cos 8e sin 80 

Z = C- (C -A) sinz eo, Z GG UlZl = (C - A) cos 9 cos e. sin e. 

and then one finds the projections of the absolute angular velocity of 
the gyroscope and the projections of the absolute velocity of its center 
of inertia on the same axes. 

The angular velocity of the inner ring is the translational angular 
velocity of the gyroscope, and since the relative angular velocity has 
been determined in Section 1, we obtain p’, q’, r’, the projections of 
the absolute angular velocity on the axes Cx,, Cyl, Czl respectively 

p’==‘acosp+(k-i) tang&sin$, q’ = b - (k -i)tanB&sin*, r’=hsinP+h+ 

The projections of the absolute velocity of the gyroscope center of 
inertia on the Oxyz coordinate axes is determined by the formulas 

Vex = - h ($ + &sin p) sing, vcll = h ($ + a’sin /3) cos 9 

V 
CZ 

=h(hcospsin*+@cos*) 

Adding the kinetic energy of the gyroscope to that of the suspension, 
we obtain the kinetic energy of the total system (n is the mass of the 
gyroscope). 

2T = (A, + Al co3 /3 + Cl sinz p) ai - 2Erab’sin p cos fi + B&z + Zrlx,p’2 + Iuly,q’~ + 

+ zz,, r ‘I - 2Z,,v,p’d - 2Zy,z, dr’ - 2I,,*, p’f + 

+ nha [ (4 + &sin P)2 + (h cos j3 sin g + 6 cos $)z] 
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Taking a, p and y as the generalized coordinates of the system, assum- 

ing that there is no friction in the axes and that the centers of inertia 

of the rings are coincident with the suspension center, we derive by 
known procedures the equations of motion for the system. The so-obtained 
equations are quite cumbersome but they can be simplified with good 
accuracy by taking into account the fact that the angle is very small, 
i.e. cos 8, = 1 and sin 8, = 8,. If the gyroscope rotates sufficiently 
rapidly and the angular velocity ly is high then by assumption O,,$ ,&m b 
and e,iy* ?r ‘;r n4 ‘fi. In the epuations of motion of the gyroscope, we neglect 
the terms of order higher than Ou*+* assuming that mh* * n12e02, while in 
practical gyroscopes ml* * A 

. . . 
[A$ + (A + Al) co@ p + CI sin0 p - 2E1 sin p co9 P ] a - 

- 2 [(A+&--Cl) sin p cos p + EI (co.9 p - sin* /3)] fi@ + C (k$ i- a’sin P) P’cos P - 
-((kC-~)OO($Ocos~cbs~-~~sin~sin~)=O 

(A-t&)8+UA+& - Cl) sin j3 cos j3 + El (~~~0s~ p - sina p)] &z - 
-C((k;P+~sinj3jacosp- (kC-~)00($0sin11,+cl$sin3cos$)= O 

C+(k;P+&sinj3)+(kC--A)O0(~cos/3sin$ +~COS~) =O 

3. Solution of the equations of motion for the gyroscope. If 8, = 0. 
the equations of motion permit a particular solution 

a = a0 = const, /3 = 30 = const, *==t+$l 

corresponding to the stationary motion of the gyroscope relative to im- 
movable gimbals. At any instant of time the motion of the gyroscope re- 
presents a rotation relative to some axis with the absolute angular velo- 

city 0 = &h. The instantaneous axis of rotation translates in space de- 
scribing a cylindrical surface the axis of which is OZ. Consequently, for 

80 = 0 the orientation of the axis OZ relative to the immovable base re- 

mains fixed. 

We will consider terms containing 8, # 0 as small perturbations, and 
will represent the solutions of equations in the form 

a = a0 + ut + E (t), P = PO + tl (t)V 9 = At + $0 + 5 (t) 

where u is the constant precession velocity of the gyroscope represent- 
ing a small quantity of order 002+; $( t) and T)( t) are bounded functions 
of time of smallness 8,. If one substitutes the derived equations for a 
and p into the equations of motion and retain only the terms of order 
Bo+* then one obtains the following system of nonhomogeneous linear 
differential equations 

1-42 i- (A i- Al) co@ PO + Cl sin0 PO - 2Er sin PO cos PO] f + 
+ co cos poTi = (Co - Al) M0 cos 30 cos (L.t + ljO) 
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(A + B$ F - Cw cos&$ = (Co - Al) I& sin (ht + +o), kc+ f&Q%,=0 

The forcing moments on the right-hand side of the equations can be 
considered as projections on the axes of the outer and Inner rings of 
the constant moment directed along OC representing the sum of the moment 
of centrifugal forces (C - A)A’B, and some gyrosconic* moment C(o - A)A9, 

The first two equations of the system are integrated independently of 
the third 

E 
kC+Zl 

= - tkc - A) % co8 PO ZoZl _ kS@ cos, PO cos tAt + %o) 

rl = - tkC - A) e. Zt, + kC cos’ &, 
ZoZl _ /@CC’ c,-,s B. sin (Ilt + (PO) 

where 
10 = AS + (A + Al) co@ p0 + cl sin* p,, - 2E1 cos $0 sin po, ZI=A+BI 

The angular velocity of precession u is found by the Yagnus [21 method 

according to which the obtained solutions for E and q should be substi- 

tuted into the equations of motion and the result averaged over the 
period of oscillation 2w/A. As a result we obtain the following equation 

- co cos pou = 4%’ [(Aa + Cl) tg PO - &I 

where 4 Is the amplitude of small oscillations of the gimbals’ outer 

ring. From this we derive a formula for the drift velocity of the gyro- 
scope under the action of nutational oscillations 

u = - 00% 
[‘(Al + Cl) sin PO - El cos pO] (kc - A)a (kc + II)* 

2kC (loll - kWa cos’ Bo)* 

The result obtained indicates the necessity for accurate coincidence 
of the Ot axis with the principal axis of inertia of the cuter ring. 

4. Determination of bearing reactions on gimbah. We will now show 
that the displacement h of the gyroscope center of inertia causes addi- 
tional reactions in the gyroscope bearings of the gimbals. The general- 
ized reaction forces will be determined by the method of Lur’e [31. Let 
the gyroscope be mounted such that the outer ring axis is horizontal, 
while the axis Oy is directed along the gravity vertical (Fig. 2). The 

l In the system of coordinates, the gyroscope rotating relative to the 
axis OZ with angular velocity h has a certain kinetic moment if’ 
directed along Cc. The axes Or and Cc do not coincide. therefore, a 
gJroscopic moment H’ x h equal to C(0 - A)he, directed along OC (Fig. 
1) is generated. 
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vertical reaction of the thrust bearing is to be determined. 

Let us eliminate the constraint by removing the support of the inner 
ring and write down the kinetic enera;S for the inner ring and the gyro- 
scope 

T+grB+,(jra - 2&j+. cos lp + k@) i_ kZC$] 

where y is the coordinate of the center of inertia of the inner ring kll 
and R are masses of the inner ring and of the gyroscope. In computing 
the kinetic energy we let 8, = 0 and neglect the kinetic energy due to 
precession resulting from the earth’s rotation. The potential energy is 

of the form 

U =(M1+m)gy+mghsin$ 

Writing the Lagrange equations and regarding the vertical component 
of the thrust bearing as the generalized reaction force we obtain 

If the constraint equation y = 0 is considered, then the latter equa- 
tion is integrated independently from the first one, while the thrust 
bearing reaction is found Prom the first equation. 

Since h is quite small we take only the 
zeroth approximation for the second equation 

9 = hs + 4% 

Fig. 2. 

From the first equation we find that 

Yi = (MI + m) g - mh2,? sin (ht + $0) 

In the case when the constrain 

i.e. 
Ml+m 

~83, when ?A* > 7 g 

the contact in the thrust bearing can be 
broken. 

The reactions in the supports of 
be found by analogous means. 

the gyroscope and the inner ring can 

5. efuplecemeot of the gyroucope fignre axis in the presence of ball 

beady rotation. Ball bearings are usually used for support of the 

is not rigid, 
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gyroscope in the inner ring of the gimbals. Reactions acting on the inner 
races of the bearings result from contact deformations of the balls and 
races. If the balls are not uniform in size and stiffness then the axis 
of the inner race of the bearing may not coincide with the axis of the 
outer race. Let, for example, the outer race of the bearing be coaxial 
and ideally symmetric relative to the mutual axis and the inner races be 
so located that the figure axis of the gyroscope Cg is the axis of sym- 
metry of these races. Then the displacement of the figure axis relative 
to the axis of symmetry of the outer races remains fixed in the coordi- 
nate system rotating with the separator since the distribution of the 
balls and their deformations depend on the rotation angle of the sepa- 
rator. The axis of symmetry of the outer races will be represented by the 
axis OZ. 

In the absence of slipping between the balls and the races of the 
bearing, the angular velocities of the gyroscope and those of the sepa- 
rators are proportional. 

Let the displacements of the ends of the figure axis be identical; 
then the considered case of relative motion of the gyroscope applies, if 
only the ball bearing separators rotate in synchronism. The angle y is 
the rotation angle for the separator about the axis OZ, while the angular 
velocity of the separator A is determined from the angular velocity of 
rotation o according to the known [41 formula 

b=+ 2oo 

D,,-dcos6 o 

where D,, is the diameter of the circle passing through the ball centers, 
d is the ball diameter, and 6 is the contact angle. It follows from this 
formula that k > 2. 

If the radius R of a circle described by the figure axis is known, 
then the possible values of the angle 8, and displacement h are bounded 
in the following regions 

The analysis of the formula for the gyroscope drift velocity in the 
presence of nutational oscillations shows that the motion of a gyroscope 
supported by ball bearings with displacement of the figure axis relative 
to the symmetry axis of the outer bearing races is analogous to the 
motion of a dynamically unbalanced gyroscope in which the polar moment 
of inertia is k times larger than C* = kc. the angle between the axis of 
dynamic symmetry and the axis of rotation equals 8,. and the velocity of 
rotation is k times smaller and equal to A. The drift velocity vanishes 
for A = kc. i.e. for gyroscopes with highly elongated elliDsoid of 
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inertia since k > 2. Usually the gyroscopes have a flattened ellipsoid 
of inertia, therefore, in the presence of bearing rotation the influence 
of gyroscope axis of symmetry displacement upon drift can be of the same 
order of magnitude as the influence of dynamic unbalance investigated by 
Klimov c51. 

It is assumed that in the scheme investigated the bearing separators 
are rotating synchronously. Under actual conditions strict synchronism is 
probably not observed; therefore, it would be interesting to investigate 
the case when the ends of the gyroscope figure axis rotate with different 
angular velocities relative to the axis Oz. 

Also, under actual conditions it is necessary to investigate more 
thoroughly the displacement of the gyroscope figure axis in the process 
of motion. It is known that an end of a shaft rotating in a ball bearing 
describes a complicated trajectory. An example of such a trajectory is 
given by Yamamoto [61 who considers oscillations of a disc and an elastic 
shaft rotating in ball bearings. 
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